Indrė Žliobaitė
Indrė Žliobaitė
Assistant Professor, University of Helsinki
Потвърден имейл адрес: helsinki.fi - Начална страница
ЗаглавиеПозоваванияГодина
A survey on concept drift adaptation
J Gama, I Žliobaitė, A Bifet, M Pechenizkiy, A Bouchachia
ACM computing surveys (CSUR) 46 (4), 44, 2014
10992014
Learning under concept drift: an overview
I Zliobaite
arXiv preprint arXiv:1010.4784, 2009
3792009
Active learning with drifting streaming data
I Žliobaitė, A Bifet, B Pfahringer, G Holmes
IEEE transactions on neural networks and learning systems 25 (1), 27-39, 2013
2352013
Open challenges for data stream mining research
G Krempl, I Žliobaite, D Brzeziński, E Hüllermeier, M Last, V Lemaire, ...
ACM SIGKDD explorations newsletter 16 (1), 1-10, 2014
1872014
Handling concept drift in process mining
RPJC Bose, WMP van der Aalst, I Žliobaitė, M Pechenizkiy
International Conference on Advanced Information Systems Engineering, 391-405, 2011
1712011
Dealing with concept drifts in process mining
RPJC Bose, WMP Van Der Aalst, I Žliobaitė, M Pechenizkiy
IEEE transactions on neural networks and learning systems 25 (1), 154-171, 2013
1122013
An overview of concept drift applications
I Žliobaitė, M Pechenizkiy, J Gama
Big data analysis: new algorithms for a new society, 91-114, 2016
1082016
Handling conditional discrimination
I Žliobaite, F Kamiran, T Calders
2011 IEEE 11th International Conference on Data Mining, 992-1001, 2011
912011
Evaluation methods and decision theory for classification of streaming data with temporal dependence
I Žliobaitė, A Bifet, J Read, B Pfahringer, G Holmes
Machine Learning 98 (3), 455-482, 2015
762015
Active learning with evolving streaming data
I Žliobaitė, A Bifet, B Pfahringer, G Holmes
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2011
752011
Why unbiased computational processes can lead to discriminative decision procedures
T Calders, I Žliobaitė
Discrimination and privacy in the information society, 43-57, 2013
732013
A survey on measuring indirect discrimination in machine learning
I Zliobaite
arXiv preprint arXiv:1511.00148, 2015
722015
Pitfalls in benchmarking data stream classification and how to avoid them
A Bifet, J Read, I Žliobaitė, B Pfahringer, G Holmes
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2013
682013
Measuring discrimination in algorithmic decision making
I Žliobaitė
Data Mining and Knowledge Discovery 31 (4), 1060-1089, 2017
632017
Next challenges for adaptive learning systems
I Zliobaite, A Bifet, M Gaber, B Gabrys, J Gama, L Minku, K Musial
ACM SIGKDD Explorations Newsletter 14 (1), 48-55, 2012
562012
On the window size for classification in changing environments
LI Kuncheva, I Žliobaitė
Intelligent Data Analysis 13 (6), 861-872, 2009
562009
Change with delayed labeling: When is it detectable?
I Žliobaite
2010 IEEE International Conference on Data Mining Workshops, 843-850, 2010
492010
Adaptive preprocessing for streaming data
I Zliobaite, B Gabrys
IEEE transactions on knowledge and data Engineering 26 (2), 309-321, 2012
472012
On the relation between accuracy and fairness in binary classification
I Zliobaite
arXiv preprint arXiv:1505.05723, 2015
462015
An ecometric analysis of the fossil mammal record of the Turkana Basin
M Fortelius, I Žliobaitė, F Kaya, F Bibi, R Bobe, L Leakey, M Leakey, ...
Philosophical Transactions of the Royal Society B: Biological Sciences 371 …, 2016
452016
Системата не може да изпълни операцията сега. Опитайте отново по-късно.
Статии 1–20