Следене
Andre Tits
Andre Tits
Professor of Electrical and Computer Engineering, University of Maryland
Потвърден имейл адрес: umd.edu
Заглавие
Позовавания
Позовавания
Година
Robustness in the presence of joint parametric uncertainty and unmodeled dynamics
MKH Fan, AL Tits, JC Doyle
1988 American control conference, 1195-1200, 1988
10061988
DELIGHT. SPICE: An optimization-based system for the design of integrated circuits
W Nye, DC Riley, A Sangiovanni-Vincentelli, AL Tits
IEEE Transactions on Computer-Aided Design of Integrated Circuits and …, 1988
4981988
User's guide for CFSQP Version 2.0: AC code for solving (large scale) constrained nonlinear (minimax) optimization problems, generating iterates satisfying all inequality …
CT Lawrence, JL Zhou, AL Tits
3961994
A computationally efficient feasible sequential quadratic programming algorithm
CT Lawrence, AL Tits
Siam Journal on optimization 11 (4), 1092-1118, 2001
3652001
On combining feasibility, descent and superlinear convergence in inequality constrained optimization
ER Panier, AL Tits
Mathematical programming 59 (1-3), 261-276, 1993
2451993
A QP-free, globally convergent, locally superlinearly convergent algorithm for inequality constrained optimization
ER Panier, AL Tits, JN Herskovits
SIAM Journal on Control and Optimization 26 (4), 788-811, 1988
2391988
A superlinearly convergent feasible method for the solution of inequality constrained optimization problems
ER Panier, AL Tits
SIAM Journal on control and Optimization 25 (4), 934-950, 1987
2131987
Characterization and efficient computation of the structured singular value
M Fan, A Tits
IEEE Transactions on Automatic Control 31 (8), 734-743, 1986
2031986
Guardian maps and the generalized stability of parametrized families of matrices and polynomials
L Saydy, AL Tits, EH Abed
Mathematics of Control, Signals and Systems 3 (4), 345-371, 1990
1791990
User’s guide for CFSQP version 2.5
C Lawrence, JL Zhou, AL Tits
University of Maryland, 1997
1671997
User’s guide for FFSQP version 3.7: A FORTRAN code for solving constrained nonlinear (minimax) optimization problems, generating iterates satisfying all inequality and linear …
JL Zhou, AL Tits, CT Lawrence
University of Maryland, 1997
164*1997
Nonmonotone line search for minimax problems
JL Zhou, AL Tits
Journal of Optimization Theory and Applications 76 (3), 455-476, 1993
1521993
Avoiding the Maratos effect by means of a nonmonotone line search I. General constrained problems
ER Panier, AL Tits
SIAM Journal on Numerical Analysis 28 (4), 1183-1195, 1991
1501991
Avoiding the Maratos effect by means of a nonmonotone line search. II. Inequality constrained problems—feasible iterates
JF Bonnans, ER Panier, AL Tits, JL Zhou
SIAM Journal on Numerical Analysis 29 (4), 1187-1202, 1992
1381992
A primal-dual interior-point method for nonlinear programming with strong global and local convergence properties
AL Tits, A Wächter, S Bakhtiari, TJ Urban, CT Lawrence
SIAM Journal on Optimization 14 (1), 173-199, 2003
1272003
Nonlinear equality constraints in feasible sequential quadratic programming
CT Lawrence, AL Tits
Optimization Methods and Software 6 (4), 265-282, 1996
1181996
An SQP algorithm for finely discretized continuous minimax problems and other minimax problems with many objective functions
JL Zhou, AL Tits
SIAM Journal on Optimization 6 (2), 461-487, 1996
1151996
An application-oriented, optimization-based methodology for interactive design of engineering systems
WT NYE, AL TITS
International Journal of Control 43 (6), 1693-1721, 1986
1091986
Globally convergent algorithms for robust pole assignment by state feedback
AL Tits, Y Yang
IEEE transactions on Automatic Control 41 (10), 1432-1452, 1996
1041996
User’s Guide for FFSQP Version 3.7: A Fortran code for solving optimization programs, possibly minimax, with general inequality constraints and linear equality constraints …
JL Zhou, AL Tits, CT Lawrence
Institute for Systems Research, University of Maryland, Technical Report SRC …, 1997
1011997
Системата не може да изпълни операцията сега. Опитайте отново по-късно.
Статии 1–20