Следене
Kshitiz Malik
Kshitiz Malik
Meta Platforms Inc
Потвърден имейл адрес: meta.com
Заглавие
Позовавания
Позовавания
Година
The llama 3 herd of models
A Dubey, A Jauhri, A Pandey, A Kadian, A Al-Dahle, A Letman, A Mathur, ...
arXiv preprint arXiv:2407.21783, 2024
12782024
Federated learning with buffered asynchronous aggregation
J Nguyen, K Malik, H Zhan, A Yousefpour, M Rabbat, M Malek, D Huba
International Conference on Artificial Intelligence and Statistics, 3581-3607, 2022
3062022
Active federated learning
J Goetz, K Malik, D Bui, S Moon, H Liu, A Kumar
arXiv preprint arXiv:1909.12641, 2019
1882019
Federated learning with partial model personalization
K Pillutla, K Malik, AR Mohamed, M Rabbat, M Sanjabi, L Xiao
International Conference on Machine Learning, 17716-17758, 2022
1692022
Effective long-context scaling of foundation models
W Xiong, J Liu, I Molybog, H Zhang, P Bhargava, R Hou, L Martin, ...
arXiv preprint arXiv:2309.16039, 2023
1422023
Papaya: Practical, private, and scalable federated learning
D Huba, J Nguyen, K Malik, R Zhu, M Rabbat, A Yousefpour, CJ Wu, ...
Proceedings of Machine Learning and Systems 4, 814-832, 2022
1412022
Federated user representation learning
D Bui, K Malik, J Goetz, H Liu, S Moon, A Kumar, KG Shin
arXiv preprint arXiv:1909.12535, 2019
982019
Where to begin? on the impact of pre-training and initialization in federated learning
J Nguyen, J Wang, K Malik, M Sanjabi, M Rabbat
arXiv preprint arXiv:2206.15387, 2022
662022
Towards next-generation intelligent assistants leveraging llm techniques
XL Dong, S Moon, YE Xu, K Malik, Z Yu
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and …, 2023
592023
Personalized Federated Learning for Assistant Systems
K Malik, S Moon, LIU Honglei, A Kumar, H Zhan, A Aly
US Patent App. 16/815,990, 2021
592021
Where to begin? exploring the impact of pre-training and initialization in federated learning
J Nguyen, K Malik, M Sanjabi, M Rabbat
arXiv preprint arXiv:2206.15387 4, 2022
372022
Fedsynth: Gradient compression via synthetic data in federated learning
S Hu, J Goetz, K Malik, H Zhan, Z Liu, Y Liu
arXiv preprint arXiv:2204.01273, 2022
372022
Exploiting postdominance for speculative parallelization
M Agarwal, K Malik, KM Woley, SS Stone, MI Frank
2007 IEEE 13th International Symposium on High Performance Computer …, 2007
272007
Voice-based Auto-Completions and Auto-Responses for Assistant Systems
F Botros, N Wang, F Wang, MPD EDIZ, O Muzaffar, K Malik, ...
US Patent App. 17/120,013, 2022
232022
Paco: Probability-based path confidence prediction
K Malik, M Agarwal, V Dhar, MI Frank
2008 IEEE 14th International Symposium on High Performance Computer …, 2008
182008
Fetch-criticality reduction through control independence
M Agarwal, N Navale, K Malik, MI Frank
ACM SIGARCH Computer Architecture News 36 (3), 13-24, 2008
112008
Active federated learning. arXiv 2019
J Goetz, K Malik, D Bui, S Moon, H Liu, A Kumar
arXiv preprint arXiv:1909.12641, 0
11
Branch-mispredict level parallelism (BLP) for control independence
K Malik, M Agarwal, SS Stone, KM Woley, MI Frank
2008 IEEE 14th International Symposium on High Performance Computer …, 2008
82008
Confidence based out-of-order renaming for speculatively multithreaded processors
K Malik, KM Woley, SS Stone, M Agarwal, V Dhar, MI Frank
Coordinated Science Laboratory Report no. UILU-ENG-06-2208, CRHC-06-04, 2006
42006
Task Execution Based on Real-world Text Detection for Assistant Systems
EK Santoro, D Savenkov, KHG Goh, K Malik, R Srivastava
US Patent App. 17/394,159, 2022
32022
Системата не може да изпълни операцията сега. Опитайте отново по-късно.
Статии 1–20