Deep speech 2: End-to-end speech recognition in english and mandarin D Amodei, S Ananthanarayanan, R Anubhai, J Bai, E Battenberg, C Case, ... International conference on machine learning, 173-182, 2016 | 3183 | 2016 |
Deep speech: Scaling up end-to-end speech recognition A Hannun, C Case, J Casper, B Catanzaro, G Diamos, E Elsen, ... arXiv preprint arXiv:1412.5567, 2014 | 2223 | 2014 |
Parallel prefix sum (scan) with CUDA M Harris, S Sengupta, JD Owens GPU gems 3 (39), 851-876, 2007 | 1025 | 2007 |
Scan primitives for GPU computing S Sengupta, M Harris, Y Zhang, JD Owens | 829 | 2007 |
Deep voice: Real-time neural text-to-speech SÖ Arık, M Chrzanowski, A Coates, G Diamos, A Gibiansky, Y Kang, X Li, ... International conference on machine learning, 195-204, 2017 | 671 | 2017 |
Fast BVH construction on GPUs C Lauterbach, M Garland, S Sengupta, D Luebke, D Manocha Computer Graphics Forum 28 (2), 375-384, 2009 | 565 | 2009 |
Exploring sparsity in recurrent neural networks S Narang, E Elsen, G Diamos, S Sengupta arXiv preprint arXiv:1704.05119, 2017 | 293 | 2017 |
Real-time parallel hashing on the GPU DA Alcantara, A Sharf, F Abbasinejad, S Sengupta, M Mitzenmacher, ... ACM SIGGRAPH asia 2009 papers, 1-9, 2009 | 258 | 2009 |
Glift: Generic, efficient, random-access GPU data structures AE Lefohn, S Sengupta, J Kniss, R Strzodka, JD Owens ACM Transactions on Graphics (TOG) 25 (1), 60-99, 2006 | 231 | 2006 |
Navigating the maze of graph analytics frameworks using massive graph datasets N Satish, N Sundaram, MMA Patwary, J Seo, J Park, MA Hassaan, ... Proceedings of the 2014 ACM SIGMOD international conference on Management of …, 2014 | 203 | 2014 |
Efficient parallel scan algorithms for GPUs S Sengupta, M Harris, M Garland NVIDIA, Santa Clara, CA, Tech. Rep. NVR-2008-003 1 (1), 1-17, 2008 | 195 | 2008 |
Crypten: Secure multi-party computation meets machine learning B Knott, S Venkataraman, A Hannun, S Sengupta, M Ibrahim, ... Advances in Neural Information Processing Systems 34, 4961-4973, 2021 | 140 | 2021 |
A work-efficient step-efficient prefix sum algorithm S Sengupta, A Lefohn, JD Owens | 120 | 2006 |
Persistent rnns: Stashing recurrent weights on-chip G Diamos, S Sengupta, B Catanzaro, M Chrzanowski, A Coates, E Elsen, ... International Conference on Machine Learning, 2024-2033, 2016 | 103 | 2016 |
Elf opengo: An analysis and open reimplementation of alphazero Y Tian, J Ma, Q Gong, S Sengupta, Z Chen, J Pinkerton, L Zitnick International conference on machine learning, 6244-6253, 2019 | 99 | 2019 |
Resolution-matched shadow maps AE Lefohn, S Sengupta, JD Owens ACM Transactions on Graphics (TOG) 26 (4), 20-es, 2007 | 95 | 2007 |
Building an efficient hash table on the GPU DA Alcantara, V Volkov, S Sengupta, M Mitzenmacher, JD Owens, ... GPU Computing Gems Jade Edition, 39-53, 2012 | 75 | 2012 |
Out‐of‐core data management for path tracing on hybrid resources B Budge, T Bernardin, JA Stuart, S Sengupta, KI Joy, JD Owens Computer Graphics Forum 28 (2), 385-396, 2009 | 70 | 2009 |
CUDPP: CUDA data parallel primitives library M Harris, J Owens, S Sengupta, Y Zhang, A Davidson 2015-04-05]. http://code. google. com/p/cudpp, 2007 | 64 | 2007 |
Efficient parallel scan algorithms for many-core gpus S Sengupta, MJ Harris, M Garland, JD Owens eScholarship, University of California, 2011 | 57 | 2011 |