Dimensionality reduction for complex models via Bayesian compressive sensing K Sargsyan, C Safta, HN Najm, BJ Debusschere, D Ricciuto, P Thornton International Journal for Uncertainty Quantification 4 (1), 2014 | 178 | 2014 |
A survey of constrained Gaussian process regression: Approaches and implementation challenges LP Swiler, M Gulian, AL Frankel, C Safta, JD Jakeman Journal of Machine Learning for Modeling and Computing 1 (2), 2020 | 160 | 2020 |
Uncertainty quantification of reaction mechanisms accounting for correlations introduced by rate rules and fitted Arrhenius parameters J Prager, HN Najm, K Sargsyan, C Safta, WJ Pitz Combustion and flame 160 (9), 1583-1593, 2013 | 91 | 2013 |
Compressive sensing adaptation for polynomial chaos expansions P Tsilifis, X Huan, C Safta, K Sargsyan, G Lacaze, JC Oefelein, HN Najm, ... Journal of Computational Physics 380, 29-47, 2019 | 70 | 2019 |
The Uncertainty Quantification Toolkit (UQTk). B Debusschere, K Sargsyan, C Safta, KS Chowdhary Sandia National Lab.(SNL-CA), Livermore, CA (United States), 2015 | 66 | 2015 |
Efficient uncertainty quantification in stochastic economic dispatch C Safta, RLY Chen, HN Najm, A Pinar, JP Watson IEEE Transactions on Power Systems 32 (4), 2535-2546, 2016 | 54 | 2016 |
TChem-a software toolkit for the analysis of complex kinetic models C Safta, HN Najm, O Knio Sandia National Lab.(SNL-CA), Livermore, CA (United States), 2011 | 54 | 2011 |
Uncertainty quantification given discontinuous model response and a limited number of model runs K Sargsyan, C Safta, B Debusschere, H Najm SIAM Journal on Scientific Computing 34 (1), B44-B64, 2012 | 45 | 2012 |
Chemical model reduction under uncertainty RM Galassi, M Valorani, HN Najm, C Safta, M Khalil, PP Ciottoli Combustion and Flame 179, 242-252, 2017 | 44 | 2017 |
Compressive sensing with cross-validation and stop-sampling for sparse polynomial chaos expansions X Huan, C Safta, K Sargsyan, ZP Vane, G Lacaze, JC Oefelein, HN Najm SIAM/ASA Journal on Uncertainty Quantification 6 (2), 907-936, 2018 | 43 | 2018 |
Global sensitivity analysis and estimation of model error, toward uncertainty quantification in scramjet computations X Huan, C Safta, K Sargsyan, G Geraci, MS Eldred, ZP Vane, G Lacaze, ... AIAA Journal 56 (3), 1170-1184, 2018 | 42 | 2018 |
Autoignition and structure of nonpremixed CH4/H2 flames: detailed and reduced kinetic models C Safta, CK Madnia Combustion and flame 144 (1-2), 64-73, 2006 | 39 | 2006 |
Bayesian calibration of terrestrial ecosystem models: a study of advanced Markov chain Monte Carlo methods D Lu, D Ricciuto, A Walker, C Safta, W Munger Biogeosciences 14 (18), 4295-4314, 2017 | 38 | 2017 |
A high-order low-Mach number AMR construction for chemically reacting flows C Safta, J Ray, HN Najm Journal of Computational Physics 229 (24), 9299-9322, 2010 | 34 | 2010 |
Entropy-based closure for probabilistic learning on manifolds C Soize, R Ghanem, C Safta, X Huan, ZP Vane, J Oefelein, G Lacaze, ... Journal of Computational Physics 388, 518-533, 2019 | 32 | 2019 |
Design optimization of a scramjet under uncertainty using probabilistic learning on manifolds RG Ghanem, C Soize, C Safta, X Huan, G Lacaze, JC Oefelein, HN Najm Journal of Computational Physics 399, 108930, 2019 | 29 | 2019 |
A second-order coupled immersed boundary-SAMR construction for chemically reacting flow over a heat-conducting Cartesian grid-conforming solid KS Kedia, C Safta, J Ray, HN Najm, AF Ghoniem Journal of Computational Physics 272, 408-428, 2014 | 27 | 2014 |
Simulated production of OH, HO2, CH2O, and CO2 during dilute fuel oxidation can predict 1st-stage ignition delays ZJ Buras, C Safta, J Zádor, L Sheps Combustion and Flame 216, 472-484, 2020 | 25 | 2020 |
Data-free inference of uncertain parameters in chemical models HN Najm, RD Berry, C Safta, K Sargsyan, BJ Debusschere International Journal for Uncertainty Quantification 4 (2), 2014 | 25 | 2014 |
Enhancing model predictability for a scramjet using probabilistic learning on manifolds C Soize, R Ghanem, C Safta, X Huan, ZP Vane, JC Oefelein, G Lacaze, ... AIAA Journal 57 (1), 365-378, 2019 | 24 | 2019 |