Follow
Tom Le Paine
Tom Le Paine
Research Scientist, DeepMind
Verified email at google.com - Homepage
Title
Cited by
Cited by
Year
Grandmaster level in StarCraft II using multi-agent reinforcement learning
O Vinyals, I Babuschkin, WM Czarnecki, M Mathieu, A Dudzik, J Chung, ...
Nature 575 (7782), 350-354, 2019
30532019
Alphastar: Mastering the real-time strategy game starcraft ii
O Vinyals, I Babuschkin, J Chung, M Mathieu, M Jaderberg, ...
DeepMind blog 2, 20, 2019
4862019
Do deep neural networks learn facial action units when doing expression recognition?
P Khorrami, T Paine, T Huang
Proceedings of the IEEE international conference on computer vision …, 2015
3192015
Seq-nms for video object detection
W Han*, P Khorrami*, TL Paine*, P Ramachandran, M Babaeizadeh, ...
arXiv preprint arXiv:1602.08465, 2016
3172016
Playing hard exploration games by watching youtube
Y Aytar, T Pfaff, D Budden, T Paine, Z Wang, N De Freitas
Advances in neural information processing systems 31, 2018
2552018
Acme: A research framework for distributed reinforcement learning
MW Hoffman, B Shahriari, J Aslanides, G Barth-Maron, N Momchev, ...
arXiv preprint arXiv:2006.00979, 2020
1692020
Optimized preload leakage-correction methods to improve the diagnostic accuracy of dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in posttreatment gliomas
LS Hu, LC Baxter, DS Pinnaduwage, TL Paine, JP Karis, BG Feuerstein, ...
American Journal of Neuroradiology 31 (1), 40-48, 2010
1542010
Large-scale visual speech recognition
B Shillingford, Y Assael, MW Hoffman, T Paine, C Hughes, U Prabhu, ...
arXiv preprint arXiv:1807.05162, 2018
1482018
How deep neural networks can improve emotion recognition on video data
P Khorrami, T Le Paine, K Brady, C Dagli, TS Huang
2016 IEEE international conference on image processing (ICIP), 619-623, 2016
1312016
Rl unplugged: Benchmarks for offline reinforcement learning
C Gulcehre*, Z Wang*, A Novikov*, TL Paine*, SG Colmenarejo, K Zolna, ...
arXiv preprint arXiv:2006.13888, 2020
121*2020
GPU asynchronous stochastic gradient descent to speed up neural network training
TL Paine, H Jin, J Yang, Z Lin, T Huang
arXiv preprint arXiv:1312.6186, 2013
1172013
Fast wavenet generation algorithm
TL Paine, P Khorrami, S Chang, Y Zhang, P Ramachandran, ...
arXiv preprint arXiv:1611.09482, 2016
1042016
Hyperparameter selection for offline reinforcement learning
TL Paine*, C Paduraru*, A Michi, C Gulcehre, K Zolna, A Novikov, Z Wang, ...
arXiv preprint arXiv:2007.09055, 2020
1012020
Few-shot autoregressive density estimation: Towards learning to learn distributions
S Reed, Y Chen, T Paine, A Oord, SM Eslami, D Rezende, O Vinyals, ...
arXiv preprint arXiv:1710.10304, 2017
872017
Fast generation for convolutional autoregressive models
P Ramachandran*, TL Paine*, P Khorrami, M Babaeizadeh, S Chang, ...
arXiv preprint arXiv:1704.06001, 2017
742017
An analysis of unsupervised pre-training in light of recent advances
TL Paine*, P Khorrami*, W Han, TS Huang
arXiv preprint arXiv:1412.6597, 2014
632014
Making Efficient Use of Demonstrations to Solve Hard Exploration Problems
TL Paine*, C Gulcehre*, B Shahriari, M Denil, M Hoffman, H Soyer, ...
arXiv preprint arXiv:1909.01387, 2019
622019
Benchmarks for deep off-policy evaluation
J Fu, M Norouzi, O Nachum, G Tucker, Z Wang, A Novikov, M Yang, ...
arXiv preprint arXiv:2103.16596, 2021
462021
Improving the gating mechanism of recurrent neural networks
A Gu, C Gulcehre, T Paine, M Hoffman, R Pascanu
International Conference on Machine Learning, 3800-3809, 2020
422020
One-shot high-fidelity imitation: Training large-scale deep nets with rl
TL Paine*, SG Colmenarejo*, Z Wang, S Reed, Y Aytar, T Pfaff, ...
arXiv preprint arXiv:1810.05017, 2018
232018
The system can't perform the operation now. Try again later.
Articles 1–20