Adversarial t-shirt! evading person detectors in a physical world K Xu, G Zhang, S Liu, Q Fan, M Sun, H Chen, PY Chen, Y Wang, X Lin Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020 | 358 | 2020 |
Spvit: Enabling faster vision transformers via latency-aware soft token pruning Z Kong, P Dong, X Ma, X Meng, W Niu, M Sun, X Shen, G Yuan, B Ren, ... European conference on computer vision, 620-640, 2022 | 157 | 2022 |
Mix and match: A novel fpga-centric deep neural network quantization framework SE Chang, Y Li, M Sun, R Shi, HKH So, X Qian, Y Wang, X Lin 2021 IEEE International Symposium on High-Performance Computer Architecture …, 2021 | 105 | 2021 |
Film-qnn: Efficient fpga acceleration of deep neural networks with intra-layer, mixed-precision quantization M Sun, Z Li, A Lu, Y Li, SE Chang, X Ma, X Lin, Z Fang Proceedings of the 2022 ACM/SIGDA International Symposium on Field …, 2022 | 63 | 2022 |
VAQF: fully automatic software-hardware co-design framework for low-bit vision transformer M Sun, H Ma, G Kang, Y Jiang, T Chen, X Ma, Z Wang, Y Wang arXiv preprint arXiv:2201.06618, 2022 | 51 | 2022 |
Auto-vit-acc: An fpga-aware automatic acceleration framework for vision transformer with mixed-scheme quantization Z Li, M Sun, A Lu, H Ma, G Yuan, Y Xie, H Tang, Y Li, M Leeser, Z Wang, ... 2022 32nd International Conference on Field-Programmable Logic and …, 2022 | 50 | 2022 |
Interpreting adversarial examples by activation promotion and suppression K Xu, S Liu, G Zhang, M Sun, P Zhao, Q Fan, C Gan, X Lin arXiv preprint arXiv:1904.02057, 2019 | 44 | 2019 |
3D CNN acceleration on FPGA using hardware-aware pruning M Sun, P Zhao, M Gungor, M Pedram, M Leeser, X Lin 2020 57th ACM/IEEE Design Automation Conference (DAC), 1-6, 2020 | 34 | 2020 |
Evading real-time person detectors by adversarial t-shirt K Xu, G Zhang, S Liu, Q Fan, M Sun, H Chen, PY Chen, Y Wang, X Lin arXiv preprint arXiv:1910.11099 2, 2019 | 30 | 2019 |
Heatvit: Hardware-efficient adaptive token pruning for vision transformers P Dong, M Sun, A Lu, Y Xie, K Liu, Z Kong, X Meng, Z Li, X Lin, Z Fang, ... 2023 IEEE International Symposium on High-Performance Computer Architecture …, 2023 | 29 | 2023 |
SS-Auto: A single-shot, automatic structured weight pruning framework of DNNs with ultra-high efficiency Z Li, Y Gong, X Ma, S Liu, M Sun, Z Zhan, Z Kong, G Yuan, Y Wang arXiv preprint arXiv:2001.08839, 2020 | 20 | 2020 |
RMSMP: A novel deep neural network quantization framework with row-wise mixed schemes and multiple precisions SE Chang, Y Li, M Sun, W Jiang, S Liu, Y Wang, X Lin Proceedings of the IEEE/CVF international conference on computer vision …, 2021 | 18 | 2021 |
Power management in hybrid electric vehicles using deep recurrent reinforcement learning M Sun, P Zhao, X Lin Electrical Engineering 104 (3), 1459-1471, 2022 | 17 | 2022 |
Peeling the onion: Hierarchical reduction of data redundancy for efficient vision transformer training Z Kong, H Ma, G Yuan, M Sun, Y Xie, P Dong, X Meng, X Shen, H Tang, ... Proceedings of the AAAI Conference on Artificial Intelligence 37 (7), 8360-8368, 2023 | 14 | 2023 |
RT3D: Achieving real-time execution of 3d convolutional neural networks on mobile devices W Niu, M Sun, Z Li, JA Chen, J Guan, X Shen, Y Wang, S Liu, X Lin, ... Proceedings of the AAAI Conference on Artificial Intelligence 35 (10), 9179-9187, 2021 | 13 | 2021 |
Real-time mobile acceleration of dnns: From computer vision to medical applications H Li, G Yuan, W Niu, Y Cai, M Sun, Z Li, B Ren, X Lin, Y Wang Proceedings of the 26th Asia and South Pacific Design Automation Conference …, 2021 | 13 | 2021 |
Towards an efficient and general framework of robust training for graph neural networks K Xu, S Liu, PY Chen, M Sun, C Ding, B Kailkhura, X Lin ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and …, 2020 | 13 | 2020 |
MSP: an FPGA-specific mixed-scheme, multi-precision deep neural network quantization framework SE Chang, Y Li, M Sun, W Jiang, R Shi, X Lin, Y Wang arXiv preprint arXiv:2009.07460, 2020 | 10 | 2020 |
HSIM-DNN: Hardware simulator for computation-, storage-and power-efficient deep neural networks M Sun, P Zhao, Y Wang, N Chang, X Lin Proceedings of the 2019 on Great Lakes Symposium on VLSI, 81-86, 2019 | 9 | 2019 |
TAAS: A timing-aware analytical strategy for AQFP-capable placement automation P Dong, Y Xie, H Li, M Sun, O Chen, N Yoshikawa, Y Wang Proceedings of the 59th ACM/IEEE Design Automation Conference, 1321-1326, 2022 | 7 | 2022 |