Следене
Hrushikesh Mhaskar
Заглавие
Позовавания
Позовавания
Година
Why and when can deep-but not shallow-networks avoid the curse of dimensionality: a review
T Poggio, H Mhaskar, L Rosasco, B Miranda, Q Liao
International Journal of Automation and Computing 14 (5), 503-519, 2017
5562017
Neural networks for optimal approximation of smooth and analytic functions
HN Mhaskar
Neural computation 8 (1), 164-177, 1996
4051996
Approximation by superposition of sigmoidal and radial basis functions
HN Mhaskar, CA Micchelli
Advances in Applied mathematics 13 (3), 350-373, 1992
3581992
Deep vs. shallow networks: An approximation theory perspective
HN Mhaskar, T Poggio
Analysis and Applications 14 (06), 829-848, 2016
3542016
Where does the sup norm of a weighted polynomial live? A generalization of incomplete polynomials
HN Mhaskar, EB Saff
Constructive Approximation 1, 71-91, 1985
2721985
Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature
H Mhaskar, F Narcowich, J Ward
Mathematics of computation 70 (235), 1113-1130, 2001
2342001
Extremal problems for polynomials with exponential weights
HN Mhaskar, EB Saff
Transactions of the American Mathematical Society 285 (1), 203-234, 1984
2341984
Introduction to the theory of weighted polynomial approximation
HN Mhaskar
World Scientific, 1996
2081996
When and why are deep networks better than shallow ones?
H Mhaskar, Q Liao, T Poggio
Proceedings of the AAAI conference on artificial intelligence 31 (1), 2017
1982017
Approximation properties of a multilayered feedforward artificial neural network
HN Mhaskar
Advances in Computational Mathematics 1 (1), 61-80, 1993
1821993
Degree of approximation by neural and translation networks with a single hidden layer
HN Mhaskar, CA Micchelli
Advances in applied mathematics 16 (2), 151-183, 1995
1681995
Learning functions: when is deep better than shallow
H Mhaskar, Q Liao, T Poggio
arXiv preprint arXiv:1603.00988, 2016
1572016
Fundamentals of approximation theory
HN Mhaskar, DV Pai
CRC Press, 2000
1242000
Neural networks for localized approximation
CK Chui, X Li, HN Mhaskar
mathematics of computation 63 (208), 607-623, 1994
1221994
On trigonometric wavelets
CK Chui, HN Mhaskar
Constructive Approximation 9, 167-190, 1993
1181993
A proof of Freud's conjecture for exponential weights
DS Lubinsky, HN Mhaskar, EB Saff
Constructive Approximation 4, 65-83, 1988
1171988
Theory of deep learning III: explaining the non-overfitting puzzle
T Poggio, K Kawaguchi, Q Liao, B Miranda, L Rosasco, X Boix, J Hidary, ...
arXiv preprint arXiv:1801.00173, 2017
1162017
A deep learning approach to diabetic blood glucose prediction
HN Mhaskar, SV Pereverzyev, MD Van der Walt
Frontiers in Applied Mathematics and Statistics 3, 14, 2017
1122017
Diffusion polynomial frames on metric measure spaces
M Maggioni, HN Mhaskar
Applied and Computational Harmonic Analysis 24 (3), 329-353, 2008
982008
Dimension-independent bounds on the degree of approximation by neural networks
HN Mhaskar, CA Micchelli
IBM Journal of Research and Development 38 (3), 277-284, 1994
971994
Системата не може да изпълни операцията сега. Опитайте отново по-късно.
Статии 1–20