Следене
Jianxiang Feng
Jianxiang Feng
TUM-Technical University of Munich
Потвърден имейл адрес: tum.de - Начална страница
Заглавие
Позовавания
Позовавания
Година
A survey of uncertainty in deep neural networks
J Gawlikowski, CRN Tassi, M Ali, J Lee, M Humt, J Feng, A Kruspe, ...
Artificial Intelligence Review 56 (Suppl 1), 1513-1589, 2023
11932023
Estimating model uncertainty of neural networks in sparse information form
J Lee, M Humt, J Feng, R Triebel
International Conference on Machine Learning, 5702-5713, 2020
642020
Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks with Sparse Gaussian Processes
J Lee, J Feng, M Humt, M Müller, R Triebel
5th Annual Conference on Robot Learning, 2021
242021
Bayesian active learning for sim-to-real robotic perception
J Feng, J Lee, M Durner, R Triebel
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2022
15*2022
Introspective robot perception using smoothed predictions from bayesian neural networks
J Feng, M Durner, ZC Marton, F Balint-Benczedi, R Triebel
International Symposium on Robotics Research (ISRR), 06-10 Oct 2019, Hanoi …, 2019
122019
Efficient and Feasible Robotic Assembly Sequence Planning via Graph Representation Learning
M Atad*, J Feng*, I Rodríguez, M Durner, R Triebel
arXiv preprint arXiv:2303.10135, 2023
72023
Virtual Reality via Object Pose Estimation and Active Learning: Realizing Telepresence Robots with Aerial Manipulation Capabilities
J Lee, R Balachandran, K Kondak, A Coelho, M De Stefano, M Humt, ...
arXiv preprint arXiv:2210.09678, 2022
6*2022
Topology-Matching Normalizing Flows for Out-of-Distribution Detection in Robot Learning
J Feng, J Lee, S Geisler, S Gunnemann, R Triebel
7th Annual Conference on Robot Learning, 2023
52023
Language-Guided Object-Centric Diffusion Policy for Collision-Aware Robotic Manipulation
H Li, Q Feng, Z Zheng, J Feng, A Knoll
arXiv preprint arXiv:2407.00451, 2024
3*2024
Density-based Feasibility Learning with Normalizing Flows for Introspective Robotic Assembly
J Feng, M Atad, I Rodríguez, M Durner, S Günnemann, R Triebel
18th Robotics: Science and System 2023 Workshops. Robotics and AI: The …, 2023
22023
Evaluating Uncertainty-based Failure Detection for Closed-Loop LLM Planners
Z Zheng, Q Feng, L Hang, A Knoll, J Feng
ICRA 2024 Workshop on Back to the Future: Robot Learning Going Probabilistic, 2024
12024
Introspective Perception for Long-term Aerial Telemanipulation with Virtual Reality
J Lee, R Balachandran, K Kondak, A Coelho, M De Stefano, M Humt, ...
IEEE Transactions on Field Robotics, 2024
2024
DexGANGrasp: Dexterous Generative Adversarial Grasping Synthesis for Task-Oriented Manipulation
Q Feng, DSM Lema, M Malmir, H Li, J Feng, Z Chen, A Knoll
arXiv preprint arXiv:2407.17348, 2024
2024
FFHFlow: A Flow-based Variational Approach for Multi-fingered Grasp Synthesis in Real Time
Q Feng, J Feng, Z Chen, R Triebel, A Knoll
arXiv preprint arXiv:2407.15161, 2024
2024
Multi-fingered Dynamic Grasping for Unknown Objects
Y Burkhardt, Q Feng, J Feng, K Sharma, Z Chen, A Knoll
arXiv preprint arXiv:2310.17923v3, 2024
2024
Uncertainty-Based Improvement of a Visual Classification System
J Feng
Master Thesis, Chair of Media Technology, Technische Universität München, 2019
2019
Supplementary Materials for the Submission: Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks with Sparse Gaussian Processes
J Lee, J Feng, M Humt, MG Müller, R Triebel
Supplementary Materials for the Submission: Estimating Model Uncertainty of Neural Networks in Sparse Information Form
J Lee, M Humt, J Feng, R Triebel
Системата не може да изпълни операцията сега. Опитайте отново по-късно.
Статии 1–18