Следене
Hongwei Jin
Заглавие
Позовавания
Позовавания
Година
Latent adversarial training of graph convolution networks
H Jin, X Zhang
ICML workshop on learning and reasoning with graph-structured representations 2, 2019
582019
Certified robustness of graph convolution networks for graph classification under topological attacks
H Jin, Z Shi, VJSA Peruri, X Zhang
Advances in neural information processing systems 33, 8463-8474, 2020
482020
Robust Training of Graph Convolutional Networks via Latent Perturbation
H Jin, X Zhang
European Conference on Machine Learning (ECML), 2020
112020
Simulating aggregation algorithms for empirical verification of resilient and adaptive federated learning
H Jin, N Yan, M Mortazavi
2020 IEEE/ACM International Conference on Big Data Computing, Applications …, 2020
92020
Gromov-Wasserstein Discrepancy with Local Differential Privacy for Distributed Structural Graphs
H Jin, X Chen
Thirty-First International Joint Conference on Artificial Intelligence …, 2022
82022
Graph neural networks for detecting anomalies in scientific workflows
H Jin, K Raghavan, G Papadimitriou, C Wang, A Mandal, M Kiran, ...
The International Journal of High Performance Computing Applications 37 (3-4 …, 2023
62023
Workflow anomaly detection with graph neural networks
H Jin, K Raghavan, G Papadimitriou, C Wang, A Mandal, P Krawczuk, ...
2022 IEEE/ACM Workshop on Workflows in Support of Large-Scale Science (WORKS …, 2022
52022
Certifying Robust Graph Classification under Orthogonal Gromov-Wasserstein Threats
H Jin, Z Yu, X Zhang
Advances in Neural Information Processing Systems, 2022
42022
Flow-bench: A dataset for computational workflow anomaly detection
G Papadimitriou, H Jin, C Wang, R Mayani, K Raghavan, A Mandal, ...
arXiv preprint arXiv:2306.09930, 2023
32023
Orthogonal Gromov-Wasserstein Discrepancy with Efficient Lower Bound
H Jin, Z Yu, X Zhang
The 38th Conference on Uncertainty in Artificial Intelligence, 2022
32022
Physics-Informed Heterogeneous Graph Neural Networks for DC Blocker Placement
H Jin, P Balaprakash, A Zou, P Ghysels, AS Krishnapriyan, A Mate, ...
Electric Power Systems Research 235, 110795, 2024
22024
A Tutorial of AMPL for Linear Programming
H Jin
22014
Massively Scalable, Resilient, and Adaptive Federated Learning System
MS Mortazavi, H Jin, N Yan
US Patent App. 18/159,571, 2023
12023
Large Language Models for Anomaly Detection in Computational Workflows: from Supervised Fine-Tuning to In-Context Learning
H Jin, G Papadimitriou, K Raghavan, P Zuk, P Balaprakash, C Wang, ...
The International Conference for High Performance Computing, Networking …, 2024
2024
Advancing Anomaly Detection in Computational Workflows with Active Learning
K Raghavan, G Papadimitriou, H Jin, A Mandal, M Kiran, P Balaprakash, ...
arXiv preprint arXiv:2405.06133, 2024
2024
ICML Topological Deep Learning Challenge 2024: Beyond the Graph Domain
G Bernárdez, L Telyatnikov, M Montagna, F Baccini, M Papillon, ...
Proceedings of the Geometry-grounded Representation Learning and Generative …, 2024
2024
Self-supervised Learning for Anomaly Detection in Computational Workflows
H Jin, K Raghavan, G Papadimitriou, C Wang, A Mandal, E Deelman, ...
arXiv preprint arXiv:2310.01247, 2023
2023
Robust Learning on Graphs
H Jin
University of Illinois at Chicago, 2022
2022
glmgen
D Pinney, E Hale, M Havard, H Jin, A Fisher, B Palmintier, A Perrin, ...
National Renewable Energy Laboratory (NREL), Golden, CO (United States), 2015
2015
Renewable Energy in Microgrid: A Stochastic Optimization Approach
H Jin
Illinois Institute of Technology, 2014
2014
Системата не може да изпълни операцията сега. Опитайте отново по-късно.
Статии 1–20