Follow
Benedikt Mersch
Benedikt Mersch
PhD student at Photogrammetry & Robotics Lab
Verified email at igg.uni-bonn.de - Homepage
Title
Cited by
Cited by
Year
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data
X Chen, S Li, B Mersch, L Wiesmann, J Gall, J Behley, C Stachniss
IEEE Robotics and Automation Letters 6 (4), 6529-6536, 2021
1552021
KISS-ICP: In Defense of Point-to-Point ICP -- Simple, Accurate, and Robust Registration If Done the Right Way
I Vizzo, T Guadagnino, B Mersch, L Wiesmann, J Behley, C Stachniss
IEEE Robotics and Automation Letters 8 (2), 1029-1036, 2023
1392023
Automatic Labeling to Generate Training Data for Online LiDAR-Based Moving Object Segmentation
X Chen, B Mersch, L Nunes, R Marcuzzi, I Vizzo, J Behley, C Stachniss
IEEE Robotics and Automation Letters 7 (3), 6107-6114, 2022
612022
Receding Moving Object Segmentation in 3D LiDAR Data Using Sparse 4D Convolutions
B Mersch, X Chen, I Vizzo, L Nunes, J Behley, C Stachniss
IEEE Robotics and Automation Letters 7 (3), 7503-7510, 2022
432022
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks
B Mersch, X Chen, J Behley, C Stachniss
Conference on Robot Learning (CoRL), 2021
432021
Maneuver-based Trajectory Prediction for Self-driving Cars Using Spatio-temporal Convolutional Networks
B Mersch, T Höllen, K Zhao, C Stachniss, R Roscher
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2021
362021
Building Volumetric Beliefs for Dynamic Environments Exploiting Map-Based Moving Object Segmentation
B Mersch, T Guadagnino, X Chen, I Vizzo, J Behley, C Stachniss
IEEE Robotics and Automation Letters, 2023
132023
ERASOR2: Instance-Aware Robust 3D Mapping of the Static World in Dynamic Scenes
HT Lim, L Nunes, B Mersch, X Chen, J Behley, H Myung, C Stachniss
Robotics: Science and Systems (RSS 2023), 2023
102023
Make it Dense: Self-Supervised Geometric Scan Completion of Sparse 3D LiDAR Scans in Large Outdoor Environments
I Vizzo, B Mersch, R Marcuzzi, L Wiesmann, J Behley, C Stachniss
IEEE Robotics and Automation Letters 7 (3), 8534-8541, 2022
92022
Effectively Detecting Loop Closures using Point Cloud Density Maps
S Gupta, T Guadagnino, B Mersch, I Vizzo, C Stachniss
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2024
32024
Toward Reproducible Version-Controlled Perception Platforms: Embracing Simplicity in Autonomous Vehicle Dataset Acquisition
I Vizzo, B Mersch, L Nunes, L Wiesmann, T Guadagnino, C Stachniss
3*
Radar Instance Transformer: Reliable Moving Instance Segmentation in Sparse Radar Point Clouds
M Zeller, VS Sandhu, B Mersch, J Behley, M Heidingsfeld, C Stachniss
IEEE Transactions on Robotics, 2023
22023
Radar Velocity Transformer: Single-scan Moving Object Segmentation in Noisy Radar Point Clouds
M Zeller, VS Sandhu, B Mersch, J Behley, M Heidingsfeld, C Stachniss
2023 IEEE International Conference on Robotics and Automation (ICRA), 7054-7061, 2023
22023
Scaling Diffusion Models to Real-World 3D LiDAR Scene Completion
L Nunes, R Marcuzzi, B Mersch, J Behley, C Stachniss
arXiv preprint arXiv:2403.13470, 2024
2024
Generalizable Stable Points Segmentation for 3D LiDAR Scan-to-Map Long-Term Localization
I Hroob, B Mersch, C Stachniss, M Hanheide
IEEE Robotics and Automation Letters, 2024
2024
The system can't perform the operation now. Try again later.
Articles 1–15