Следене
Philipp Hennig
Philipp Hennig
University of Tübingen & Max Planck Institute for Intelligent Systems
Потвърден имейл адрес: tue.mpg.de - Начална страница
Заглавие
Позовавания
Позовавания
Година
Entropy Search for Information-Efficient Global Optimization.
P Hennig, CJ Schuler
Journal of Machine Learning Research 13 (6), 2012
5762012
Fast bayesian optimization of machine learning hyperparameters on large datasets
A Klein, S Falkner, S Bartels, P Hennig, F Hutter
Artificial intelligence and statistics, 528-536, 2017
4792017
Batch Bayesian optimization via local penalization
J González, Z Dai, P Hennig, N Lawrence
Artificial intelligence and statistics, 648-657, 2016
2832016
Probabilistic numerics and uncertainty in computations
P Hennig, MA Osborne, M Girolami
Proceedings of the Royal Society A: Mathematical, Physical and Engineering …, 2015
2302015
The randomized dependence coefficient
D Lopez-Paz, P Hennig, B Schölkopf
Advances in Neural Information Processing Systems (NeurIPS) 26, 2013
1962013
Gaussian processes and kernel methods: A review on connections and equivalences
M Kanagawa, P Hennig, D Sejdinovic, BK Sriperumbudur
arXiv preprint arXiv:1807.02582, 2018
1682018
Dense connectomic reconstruction in layer 4 of the somatosensory cortex
A Motta, M Berning, KM Boergens, B Staffler, M Beining, S Loomba, ...
Science 366 (6469), eaay3134, 2019
1512019
Probabilistic line searches for stochastic optimization
M Mahsereci, P Hennig
Advances in Neural Information Processing Systems (NeurIPS) 28, 2015
1292015
Automatic LQR tuning based on Gaussian process global optimization
A Marco, P Hennig, J Bohg, S Schaal, S Trimpe
2016 IEEE international conference on robotics and automation (ICRA), 270-277, 2016
1202016
Quasi-Newton methods: a new direction
P Hennig, M Kiefel
arXiv preprint arXiv:1206.4602, 2012
1142012
Virtual vs. real: Trading off simulations and physical experiments in reinforcement learning with Bayesian optimization
A Marco, F Berkenkamp, P Hennig, AP Schoellig, A Krause, S Schaal, ...
2017 IEEE International Conference on Robotics and Automation (ICRA), 1557-1563, 2017
1082017
Probabilistic ODE solvers with Runge-Kutta means
M Schober, D Duvenaud, P Hennig
Advances in Neural Information Processing Systems (NeurIPS) 27, 2014
1042014
Limitations of the empirical fisher approximation for natural gradient descent
F Kunstner, L Balles, P Hennig
Advances in Neural Information Processing Systems (NeurIPS) 32, 2019
1032019
Coupling adaptive batch sizes with learning rates
L Balles, J Romero, P Hennig
Uncertainty in Artificial Intelligence (UAI) 2017, 2016
1012016
Being bayesian, even just a bit, fixes overconfidence in relu networks
A Kristiadi, M Hein, P Hennig
International conference on machine learning, 5436-5446, 2020
952020
Dissecting adam: The sign, magnitude and variance of stochastic gradients
L Balles, P Hennig
International Conference on Machine Learning, 404-413, 2018
892018
Sampling for inference in probabilistic models with fast Bayesian quadrature
T Gunter, MA Osborne, R Garnett, P Hennig, SJ Roberts
Advances in Neural Information Processing Systems (NeurIPS) 27, 2014
882014
Active learning of linear embeddings for Gaussian processes
R Garnett, MA Osborne, P Hennig
Uncertainty in Artificial Intelligence (UAI) 2014, 2013
862013
Topic models
P Hennig, D Stern, T Graepel, R Herbrich
US Patent 8,645,298, 2014
762014
Gaussian process-based predictive control for periodic error correction
ED Klenske, MN Zeilinger, B Schölkopf, P Hennig
IEEE Transactions on Control Systems Technology 24 (1), 110-121, 2015
692015
Системата не може да изпълни операцията сега. Опитайте отново по-късно.
Статии 1–20