Adaptive mesh methods for one-and two-dimensional hyperbolic conservation laws H Tang, T Tang SIAM Journal on Numerical Analysis 41 (2), 487-515, 2003 | 308 | 2003 |

A high-order gas-kinetic method for multidimensional ideal magnetohydrodynamics HZ Tang, K Xu Journal of Computational Physics 165 (1), 69-88, 2000 | 87 | 2000 |

An adaptive mesh redistribution method for nonlinear Hamilton–Jacobi equations in two-and three-dimensions HZ Tang, T Tang, P Zhang Journal of Computational Physics 188 (2), 543-572, 2003 | 75 | 2003 |

Numerical methods for nonlinear Dirac equation J Xu, S Shao, H Tang Journal of Computational Physics 245, 131-149, 2013 | 53 | 2013 |

An adaptive ghost fluid finite volume method for compressible gas–water simulations C Wang, H Tang, T Liu Journal of computational physics 227 (12), 6385-6409, 2008 | 51 | 2008 |

A note on the conservative schemes for the Euler equations H Tang, T Liu Journal of Computational Physics 218 (2), 451-459, 2006 | 49 | 2006 |

Accuracy of the adaptive GRP scheme and the simulation of 2-D Riemann problems for compressible Euler equations E Han, J Li, H Tang Communications in Computational Physics 10 (3), 577-609, 2011 | 40 | 2011 |

Second-order accurate Godunov scheme for multicomponent flows on moving triangular meshes G Chen, H Tang, P Zhang Journal of Scientific Computing 34 (1), 64-86, 2008 | 40 | 2008 |

An adaptive phase field method for the mixture of two incompressible fluids Z Zhang, H Tang Computers & fluids 36 (8), 1307-1318, 2007 | 40 | 2007 |

High-order accurate Runge-Kutta (local) discontinuous Galerkin methods for one-and two-dimensional fractional diffusion equations X Ji, H Tang Numerical Mathematics: Theory, Methods and Applications 5 (3), 333-358, 2012 | 37 | 2012 |

An adaptive moving mesh method for two-dimensional ideal magnetohydrodynamics J Han, H Tang Journal of Computational Physics 220 (2), 791-812, 2007 | 36 | 2007 |

A moving mesh method for the Euler flow calculations using a directional monitor function, Commun HZ Tang Comput. Phys 1, 656-676, 2006 | 36 | 2006 |

High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamics K Wu, H Tang Journal of Computational Physics 298, 539-564, 2015 | 35 | 2015 |

A gas-kinetic scheme for shallow-water equations with source terms H Tang, T Tang, K Xu Zeitschrift für angewandte Mathematik und Physik ZAMP 55 (3), 365-382, 2004 | 33 | 2004 |

Runge–Kutta discontinuous Galerkin methods with WENO limiter for the special relativistic hydrodynamics J Zhao, H Tang Journal of computational physics 242, 138-168, 2013 | 32 | 2013 |

Higher-order accurate Runge-Kutta discontinuous Galerkin methods for a nonlinear Dirac model S Shao, H Tang Discrete & Continuous Dynamical Systems-B 6 (3), 623, 2006 | 31 | 2006 |

An adaptive moving mesh method for two-dimensional relativistic hydrodynamics P He, H Tang Communications in Computational Physics 11 (1), 114-146, 2012 | 28 | 2012 |

A class of high resolution schemes for hyperbolic conservation laws and convection-diffusion equations with varying time and space grids H Tang, G Warnecke | 28 | 2003 |

A direct Eulerian GRP scheme for relativistic hydrodynamics: One-dimensional case Z Yang, P He, H Tang Journal of Computational Physics 230 (22), 7964-7987, 2011 | 27 | 2011 |

An adaptive GRP scheme for compressible fluid flows E Han, J Li, H Tang Journal of Computational Physics 229 (5), 1448-1466, 2010 | 27 | 2010 |