Exploring the limits of transfer learning with a unified text-to-text transformer C Raffel, N Shazeer, A Roberts, K Lee, S Narang, M Matena, Y Zhou, W Li, ... Journal of Machine Learning Research, 2020 | 7987 | 2020 |
Mixmatch: A holistic approach to semi-supervised learning D Berthelot, N Carlini, I Goodfellow, N Papernot, A Oliver, C Raffel Neural Information Processing Systems, 2019 | 2285 | 2019 |
librosa: Audio and music signal analysis in python B McFee, C Raffel, D Liang, DPW Ellis, M McVicar, E Battenberg, O Nieto Python in Science Conference, 2015 | 2260 | 2015 |
Fixmatch: Simplifying semi-supervised learning with consistency and confidence K Sohn, D Berthelot, CL Li, Z Zhang, N Carlini, ED Cubuk, A Kurakin, ... Neural Information Processing Systems, 2020 | 1936 | 2020 |
Theano: A Python framework for fast computation of mathematical expressions R Al-Rfou, G Alain, A Almahairi, C Angermueller, D Bahdanau, N Ballas, ... arXiv preprint arXiv:1605.02688, 2016 | 1165 | 2016 |
Realistic evaluation of deep semi-supervised learning algorithms A Oliver, A Odena, C Raffel, ED Cubuk, I Goodfellow Neural Information Processing Systems, 2018 | 973 | 2018 |
mT5: A massively multilingual pre-trained text-to-text transformer L Xue, N Constant, A Roberts, M Kale, R Al-Rfou, A Siddhant, A Barua, ... Annual Conference of the North American Chapter of the Association for …, 2020 | 919 | 2020 |
Remixmatch: Semi-supervised learning with distribution alignment and augmentation anchoring D Berthelot, N Carlini, ED Cubuk, A Kurakin, K Sohn, H Zhang, C Raffel International Conference on Learning Representations, 2019 | 779 | 2019 |
Thermometer Encoding: One Hot Way To Resist Adversarial Examples J Buckman, A Roy, C Raffel, I Goodfellow International Conference on Learning Representations, 2018 | 619 | 2018 |
Extracting training data from large language models N Carlini, F Tramer, E Wallace, M Jagielski, A Herbert-Voss, K Lee, ... USENIX Security Symposium, 2021 | 585 | 2021 |
Lasagne: first release S Dieleman, J Schlüter, C Raffel, E Olson, SK Sĝnderby, D Nouri, ... | 509* | 2015 |
mir_eval: A Transparent Implementation of Common MIR Metrics C Raffel, B McFee, EJ Humphrey, J Salamon, O Nieto, D Liang, DPW Ellis International Society for Music Information Retrieval Conference, 2014 | 487 | 2014 |
Multitask Prompted Training Enables Zero-Shot Task Generalization V Sanh, A Webson, C Raffel, SH Bach, L Sutawika, Z Alyafeai, A Chaffin, ... International Conference on Learning Representations, 2021 | 457 | 2021 |
How Much Knowledge Can You Pack Into the Parameters of a Language Model? A Roberts, C Raffel, N Shazeer Conference on Empirical Methods in Natural Language Processing, 2020 | 446 | 2020 |
A hierarchical latent vector model for learning long-term structure in music A Roberts, J Engel, C Raffel, C Hawthorne, D Eck International Conference on Machine Learning, 2018 | 436 | 2018 |
Probabilistic machine learning: an introduction KP Murphy MIT press, 2022 | 378 | 2022 |
Imperceptible, robust, and targeted adversarial examples for automatic speech recognition Y Qin, N Carlini, G Cottrell, I Goodfellow, C Raffel International Conference on Machine Learning, 2019 | 351 | 2019 |
Feed-forward networks with attention can solve some long-term memory problems C Raffel, DPW Ellis International Conference on Learning Representations, 2015 | 350* | 2015 |
Optimizing DTW-based audio-to-MIDI alignment and matching C Raffel, DPW Ellis International Conference on Acoustics, Speech and Signal Processing, 2016 | 287 | 2016 |
Emergent abilities of large language models J Wei, Y Tay, R Bommasani, C Raffel, B Zoph, S Borgeaud, D Yogatama, ... Transactions on Machine Learning Research, 2022 | 286 | 2022 |