Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing A Chakraborty, M Sain, M Kortschot Walter de Gruyter 59 (1), 102-107, 2005 | 448 | 2005 |
Predicting the elastic modulus of natural fibre reinforced thermoplastics AG Facca, MT Kortschot, N Yan Composites Part A: Applied Science and Manufacturing 37 (10), 1660-1671, 2006 | 362 | 2006 |
Effect of the crystallinity and morphology on the microcellular foam structure of semicrystalline polymers S Doroudiani, CB Park, MT Kortschot Polymer Engineering & Science 36 (21), 2645-2662, 1996 | 348 | 1996 |
Processing and characterization of microcellular foamed high‐density polythylene/isotactic polypropylene blends S Doroudiani, CB Park, MT Kortschot Polymer Engineering & Science 38 (7), 1205-1215, 1998 | 347 | 1998 |
Predicting the tensile strength of natural fibre reinforced thermoplastics AG Facca, MT Kortschot, N Yan Composites Science and Technology 67 (11-12), 2454-2466, 2007 | 211 | 2007 |
Damage mechanics of composite materials: I—Measurements of damage and strength MT Kortschot, PWR Beaumont Composites Science and Technology 39 (4), 289-301, 1990 | 192 | 1990 |
Fabrication and characterization of fully biodegradable natural fiber-reinforced poly (lactic acid) composites Y Du, T Wu, N Yan, MT Kortschot, R Farnood Composites Part B: Engineering 56, 717-723, 2014 | 179 | 2014 |
Reinforcing potential of wood pulp-derived microfibres in a PVA matrix A Chakraborty, M Sain, M Kortschot Walter de Gruyter 60 (1), 53-58, 2006 | 142 | 2006 |
The role of the resin fillet in the delamination of honeycomb sandwich structures R Okada, MT Kortschot Composites Science and Technology 62 (14), 1811-1819, 2002 | 96 | 2002 |
Damage mechanics of composite materials: II—a damaged-based notched strength model MT Kortschot, PWR Beaumont Composites science and Technology 39 (4), 303-326, 1990 | 88 | 1990 |
An experimental study of creep behavior of lightweight natural fiber-reinforced polymer composite/honeycomb core sandwich panels Y Du, N Yan, MT Kortschot Composite Structures 106, 160-166, 2013 | 80 | 2013 |
Correction to the Fukuda-Kawata Young's modulus theory and the Fukuda-Chou strength theory for short fibre-reinforced composite materials K Jayaraman, MT Kortschot Journal of materials science 31, 2059-2064, 1996 | 70 | 1996 |
Polystyrene foams. III. Structure–tensile properties relationships S Doroudiani, MT Kortschot Journal of applied polymer science 90 (5), 1427-1434, 2003 | 68 | 2003 |
Mode III delamination using a split cantilever beam F Sharif, MT Kortschot, RH Martin ASTM International, 1995 | 67 | 1995 |
Polystyrene foams. II. Structure–impact properties relationships S Doroudiani, MT Kortschot Journal of Applied Polymer Science 90 (5), 1421-1426, 2003 | 66 | 2003 |
Computer simulation of the electrical conductivity of polymer composites containing metallic fillers MT Kortschot, RT Woodhams Polymer composites 9 (1), 60-71, 1988 | 66 | 1988 |
Damage mechanics of composite materials. III: Prediction of damage growth and notched strength MT Kortschot, PWR Beaumont, MF Ashby Composites Science and Technology 40 (2), 147-165, 1991 | 64 | 1991 |
Light-weight honeycomb core sandwich panels containing biofiber-reinforced thermoset polymer composite skins: Fabrication and evaluation Y Du, N Yan, MT Kortschot Composites Part B: Engineering 43 (7), 2875-2882, 2012 | 63 | 2012 |
Understanding the stress relaxation behavior of polymers reinforced with short elastic fibers N Obaid, MT Kortschot, M Sain Materials 10 (5), 472, 2017 | 61 | 2017 |
Polystyrene foams. I. Processing‐structure relationships S Doroudiani, MT Kortschot Journal of Applied Polymer Science 90 (5), 1412-1420, 2003 | 60 | 2003 |