Niklas Koep
Niklas Koep
Потвърден имейл адрес: rwth-aachen.de
Pymanopt: A python toolbox for optimization on manifolds using automatic differentiation
J Townsend, N Koep, S Weichwald
The Journal of Machine Learning Research 17 (1), 4755-4759, 2016
Geomstats: a Python package for Riemannian geometry in machine learning
N Miolane, N Guigui, A Le Brigant, J Mathe, B Hou, Y Thanwerdas, ...
Journal of Machine Learning Research 21 (223), 1-9, 2020
Compressed sensing applied to spherical near-field to far-field transformation
R Cornelius, D Heberling, N Koep, A Behboodi, R Mathar
2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4, 2016
Introduction to geometric learning in python with geomstats
N Miolane, N Guigui, H Zaatiti, C Shewmake, H Hajri, D Brooks, ...
SciPy 2020-19th Python in Science Conference, 48-57, 2020
Adversarial risk bounds for neural networks through sparsity based compression
ER Balda, A Behboodi, N Koep, R Mathar
arXiv preprint arXiv:1906.00698, 2019
An introduction to compressed sensing
N Koep, A Behboodi, R Mathar
Compressed Sensing and Its Applications: Third International MATHEON …, 2019
Block-sparse signal recovery from binary measurements
N Koep, R Mathar
2018 IEEE Statistical Signal Processing Workshop (SSP), 293-297, 2018
Binary iterative hard thresholding for frequency-sparse signal recovery
N Koep, R Mathar
WSA 2017; 21th International ITG Workshop on Smart Antennas, 1-7, 2017
The restricted isometry property of block diagonal matrices for group-sparse signal recovery
N Koep, A Behboodi, R Mathar
Applied and Computational Harmonic Analysis 60, 333-367, 2022
Efficient implementation of density evolution for punctured polar codes
C Schnelling, M Rothe, N Koep, R Mathar, A Schmeink
IEEE Access 7, 105909-105921, 2019
Performance analysis of one-bit group-sparse signal reconstruction
N Koep, A Behboodi, R Mathar
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and …, 2019
Adversarial Risk Bounds through Sparsity based Compression
E Balda, N Koep, A Behboodi, R Mathar
International Conference on Artificial Intelligence and Statistics, 3816-3825, 2020
The group restricted isometry property for subgaussian block diagonal matrices
N Koep, A Behboodi, R Mathar
2019 IEEE International Symposium on Information Theory (ISIT), 2694-2698, 2019
Pymanopt: A Python Toolbox for manifold optimization using automatic differentiation
N Koep, S Weichwald
arXiv preprint arXiv 1603, 2016
Quantized compressive sampling for structured signal estimation
N Koep
Dissertation, RWTH Aachen University, 2019, 2019
Noise-shaping for closed-loop Multi-Channel Linear Prediction
N Koep, M Schäfer, P Vary
2015 IEEE International Conference on Acoustics, Speech and Signal …, 2015
Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic Differentiation
S Weichwald, J Townsend, N Koep
Системата не може да изпълни операцията сега. Опитайте отново по-късно.
Статии 1–17