Dino Ienco
Dino Ienco
Потвърден имейл адрес: inrae.fr - Начална страница
Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover sourcemismatch
L Pibre, J Pasquet, D Ienco, M Chaumont
Electronic Imaging 2016 (8), 1-11, 2016
Land cover classification via multitemporal spatial data by deep recurrent neural networks
D Ienco, R Gaetano, C Dupaquier, P Maurel
IEEE Geoscience and Remote Sensing Letters 14 (10), 1685-1689, 2017
Do more views of a graph help? community detection and clustering in multi-graphs
EE Papalexakis, L Akoglu, D Ience
Proceedings of the 16th International Conference on Information Fusion, 899-905, 2013
From context to distance: Learning dissimilarity for categorical data clustering
D Ienco, RG Pensa, R Meo
ACM Transactions on Knowledge Discovery from Data (TKDD) 6 (1), 1-25, 2012
Deep recurrent neural networks for winter vegetation quality mapping via multitemporal SAR Sentinel-1
DHT Minh, D Ienco, R Gaetano, N Lalande, E Ndikumana, F Osman, ...
IEEE Geoscience and Remote Sensing Letters 15 (3), 464-468, 2018
Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture
D Ienco, R Interdonato, R Gaetano, DHT Minh
ISPRS Journal of Photogrammetry and Remote Sensing 158, 11-22, 2019
DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn
R Interdonato, D Ienco, R Gaetano, K Ose
ISPRS journal of photogrammetry and remote sensing 149, 91-104, 2019
Context-based distance learning for categorical data clustering
D Ienco, RG Pensa, R Meo
International Symposium on Intelligent Data Analysis, 83-94, 2009
The meme ranking problem: Maximizing microblogging virality
D Ienco, F Bonchi, C Castillo
2010 IEEE International Conference on Data Mining Workshops, 328-335, 2010
: A Deep Learning Architecture for Multiscale Multimodal Multitemporal Satellite Data Fusion
P Benedetti, D Ienco, R Gaetano, K Ose, RG Pensa, S Dupuy
IEEE Journal of Selected Topics in Applied Earth Observations and Remote …, 2018
Fuzzy extensions of the DBScan clustering algorithm
D Ienco, G Bordogna
Soft Computing 22 (5), 1719-1730, 2018
Clustering based active learning for evolving data streams
D Ienco, A Bifet, I Žliobaitė, B Pfahringer
International Conference on Discovery Science, 79-93, 2013
Parameter-less co-clustering for star-structured heterogeneous data
D Ienco, C Robardet, RG Pensa, R Meo
Data Mining and Knowledge Discovery 26 (2), 217-254, 2013
Exploration and reduction of the feature space by hierarchical clustering
D Ienco, R Meo
proceedings of the 2008 SIAM international conference on data mining, 577-587, 2008
A two-branch CNN architecture for land cover classification of PAN and MS imagery
R Gaetano, D Ienco, K Ose, R Cresson
Remote Sensing 10 (11), 1746, 2018
Local community detection in multilayer networks
R Interdonato, A Tagarelli, D Ienco, A Sallaberry, P Poncelet
Data Mining and Knowledge Discovery 31 (5), 1444-1479, 2017
A semisupervised approach to the detection and characterization of outliers in categorical data
D Ienco, RG Pensa, R Meo
IEEE transactions on neural networks and learning systems 28 (5), 1017-1029, 2016
Mapping irrigated areas using Sentinel-1 time series in Catalonia, Spain
H Bazzi, N Baghdadi, D Ienco, M El Hajj, M Zribi, H Belhouchette, ...
Remote Sensing 11 (15), 1836, 2019
Meme ranking to maximize posts virality in microblogging platforms
F Bonchi, C Castillo, D Ienco
Journal of intelligent information systems 40 (2), 211-239, 2013
Data mining, a promising tool for large-area cropland mapping
E Vintrou, D Ienco, A Bégué, M Teisseire
IEEE Journal of Selected Topics in Applied Earth Observations and Remote …, 2013
Системата не може да изпълни операцията сега. Опитайте отново по-късно.
Статии 1–20