The Future of Digital Health with Federated Learning N Rieke, J Hancox, L Wenqi, F Milletari, H Roth, S Albarquoni, S Bakas, ... https://www.nature.com/articles/s41746-020-00323-1 3 (1), 119, 2020 | 1867 | 2020 |
Privacy-preserving Federated Brain Tumour Segmentation W Li, F Milletarì, D Xu, N Rieke, J Hancox, W Zhu, M Baust, Y Cheng, ... International Workshop on Machine Learning in Medical Imaging, 133-141, 2019 | 599 | 2019 |
Federated learning for predicting clinical outcomes in patients with COVID-19 I Dayan, HR Roth, A Zhong, A Harouni, A Gentili, AZ Abidin, A Liu, ... Nature medicine 27 (10), 1735-1743, 2021 | 569 | 2021 |
Robotic instrument segmentation challenge M Allan, A Shvets, T Kurmann, Z Zhang, R Duggal, YH Su, N Rieke, ... arXiv preprint arXiv:1902.06426, 2017 | 196 | 2017 |
Concurrent segmentation and localization for tracking of surgical instruments I Laina, N Rieke, C Rupprecht, JP Vizcaíno, A Eslami, F Tombari, ... International conference on medical image computing and computer-assisted …, 2017 | 191 | 2017 |
Concurrent Segmentation and Localization for Tracking of Surgical Instruments N Rieke, I Laina, C Rupprecht, JP Vizcaino, A Eslami, F Tombari, ... International Conference on Medical Image Computing and Computer-Assisted …, 2017 | 191* | 2017 |
Common limitations of image processing metrics: A picture story A Reinke, M Eisenmann, MD Tizabi, CH Sudre, T Rädsch, M Antonelli, ... arXiv preprint arXiv:2104.05642, 2021 | 186 | 2021 |
2017 Robotic Instrument Segmentation Challenge M Allan, A Shvets, T Kurmann, Z Zhang, R Duggal, YH Su, N Rieke, ... arXiv preprint arXiv:1902.06426, 2019 | 184 | 2019 |
Metrics reloaded: recommendations for image analysis validation L Maier-Hein, A Reinke, P Godau, MD Tizabi, F Buettner, E Christodoulou, ... Nature methods, 1-18, 2024 | 150 | 2024 |
Metrics reloaded: Pitfalls and recommendations for image analysis validation L Maier-Hein, A Reinke, E Christodoulou, B Glocker, P Godau, F Isensee, ... arXiv preprint arXiv:2206.01653, 2022 | 118 | 2022 |
NVIDIA FLARE: Federated Learning from Simulation to Real-World HR Roth, Y Cheng, Y Wen, I Yang, Z Xu, YT Hsieh, K Kersten, A Harouni, ... arXiv preprint arXiv:2210.13291, 2022 | 82 | 2022 |
Understanding metric-related pitfalls in image analysis validation A Reinke, MD Tizabi, M Baumgartner, M Eisenmann, D Heckmann-Nötzel, ... Nature methods, 1-13, 2024 | 76 | 2024 |
CrossMoDA 2021 challenge: Benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation R Dorent, A Kujawa, M Ivory, S Bakas, N Rieke, S Joutard, B Glocker, ... Medical Image Analysis 83, 102628, 2023 | 75 | 2023 |
Rapid Artificial Intelligence Solutions in a Pandemic-The COVID-19-20 Lung CT Lesion Segmentation Challenge H Roth, Z Xu, CT Diez, RS Jacob, J Zember, J Molto, W Li, S Xu, ... | 69 | 2021 |
Real-time localization of articulated surgical instruments in retinal microsurgery N Rieke, DJ Tan, CA di San Filippo, F Tombari, M Alsheakhali, ... Medical image analysis 34, 82-100, 2016 | 60 | 2016 |
Surgical tool tracking and pose estimation in retinal microsurgery N Rieke, DJ Tan, M Alsheakhali, F Tombari, CA San Filippo, ... International Conference on Medical Image Computing and Computer-Assisted …, 2015 | 57 | 2015 |
Federated Learning used for predicting outcomes in SARS-COV-2 patients M Flores, I Dayan, H Roth, A Zhong, A Harouni, A Gentili, A Abidin, A Liu, ... | 54 | |
CFCM: Segmentation via Coarse to Fine Context Memory F Milletari, N Rieke, M Baust, M Esposito, N Navab Medical Image Computing and Computer Assisted Intervention -- MICCAI 2018, 2018 | 53 | 2018 |
Melloddy: Cross-pharma federated learning at unprecedented scale unlocks benefits in qsar without compromising proprietary information W Heyndrickx, L Mervin, T Morawietz, N Sturm, L Friedrich, A Zalewski, ... Journal of chemical information and modeling, 2023 | 46 | 2023 |
The future of digital health with federated learning. npj Digital Medicine 3 (1): 1 7 N Rieke, J Hancox, W Li, F Milletarì, HR Roth, S Albarqouni, S Bakas, ... | 40* | 2020 |