Следене
Lukas Balles
Lukas Balles
Aleph Alpha
Потвърден имейл адрес: aleph-alpha.com - Начална страница
Заглавие
Позовавания
Позовавания
Година
Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation
A Ranjan, V Jampani, L Balles, K Kim, D Sun, J Wulff, MJ Black
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2019
6772019
Limitations of the empirical fisher approximation for natural gradient descent
F Kunstner, P Hennig, L Balles
Advances in neural information processing systems 32, 2019
2132019
Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients
L Balles, P Hennig
Proceedings of the 35th International Conference on Machine Learning (ICML …, 2018
1802018
Coupling Adaptive Batch Sizes with Learning Rates
L Balles, J Romero, P Hennig
Proceedings of the Thirty-Third Conference on Uncertainty in Artificial …, 2017
1352017
Early stopping without a validation set
M Mahsereci, L Balles, C Lassner, P Hennig
arXiv preprint arXiv:1703.09580, 2017
1222017
DeepOBS: A Deep Learning Optimizer Benchmark Suite
F Schneider, L Balles, P Hennig
Seventh International Conference on Learning Representations (ICLR), 2019
722019
PASHA: Efficient HPO and NAS with progressive resource allocation
O Bohdal, L Balles, M Wistuba, B Ermis, C Archambeau, G Zappella
arXiv preprint arXiv:2207.06940, 2022
182022
The Geometry of Sign Gradient Descent
L Balles, F Pedregosa, N Le Roux
arXiv preprint arXiv:2002.08056, 2020
172020
Self-tuning stochastic optimization with curvature-aware gradient filtering
RTQ Chen, D Choi, L Balles, D Duvenaud, P Hennig
PMLR, 2020
92020
Continual learning with low rank adaptation
M Wistuba, PT Sivaprasad, L Balles, G Zappella
arXiv preprint arXiv:2311.17601, 2023
62023
Holographic and other point set distances for machine learning
L Balles, T Fischbacher
62019
Renate: A library for real-world continual learning
M Wistuba, M Ferianc, L Balles, C Archambeau, G Zappella
arXiv preprint arXiv:2304.12067, 2023
42023
Automating stochastic optimization with gradient variance estimates
L Balles, M Mahsereci, P Hennig
ICML AutoML Workshop, 13, 2017
42017
Gradient-matching coresets for rehearsal-based continual learning
L Balles, G Zappella, C Archambeau
arXiv preprint arXiv:2203.14544, 2022
32022
Gradient-matching coresets for continual learning
L Balles, G Zappella, C Archambeau
arXiv preprint arXiv:2112.05025, 2021
22021
u-P: The Unit-Scaled Maximal Update Parametrization
C Blake, C Eichenberg, J Dean, L Balles, LY Prince, B Deiseroth, ...
arXiv preprint arXiv:2407.17465, 2024
12024
Choice of PEFT Technique in Continual Learning: Prompt Tuning is Not All You Need
M Wistuba, PT Sivaprasad, L Balles, G Zappella
arXiv preprint arXiv:2406.03216, 2024
12024
On the Choice of Learning Rate for Local SGD
L Balles, C Archambeau
Transactions on Machine Learning Research, 2024
12024
Continual machine learning in a provider network
G Zappella, LS Balles, B Ermis, M Wistuba, CP Archambeau
US Patent App. 17/937,319, 2024
2024
A negative result on gradient matching for selective backprop
L Balles, C Archambeau, G Zappella
arXiv preprint arXiv:2312.05021, 2023
2023
Системата не може да изпълни операцията сега. Опитайте отново по-късно.
Статии 1–20