Следене
Nicholas Watters
Nicholas Watters
Потвърден имейл адрес: mit.edu
Заглавие
Позовавания
Позовавания
Година
Understanding disentangling in -VAE
CP Burgess, I Higgins, A Pal, L Matthey, N Watters, G Desjardins, ...
arXiv preprint arXiv:1804.03599, 2018
9102018
Monet: Unsupervised scene decomposition and representation
CP Burgess, L Matthey, N Watters, R Kabra, I Higgins, M Botvinick, ...
arXiv preprint arXiv:1901.11390, 2019
3822019
Multi-object representation learning with iterative variational inference
K Greff, RL Kaufman, R Kabra, N Watters, C Burgess, D Zoran, L Matthey, ...
International Conference on Machine Learning, 2424-2433, 2019
3762019
Visual interaction networks: Learning a physics simulator from video
N Watters, D Zoran, T Weber, P Battaglia, R Pascanu, A Tacchetti
Advances in neural information processing systems 30, 2017
3472017
Life-long disentangled representation learning with cross-domain latent homologies
A Achille, T Eccles, L Matthey, C Burgess, N Watters, A Lerchner, ...
Advances in Neural Information Processing Systems 31, 2018
1152018
Spatial broadcast decoder: A simple architecture for learning disentangled representations in vaes
N Watters, L Matthey, CP Burgess, A Lerchner
arXiv preprint arXiv:1901.07017, 2019
1022019
Cobra: Data-efficient model-based rl through unsupervised object discovery and curiosity-driven exploration
N Watters, L Matthey, M Bosnjak, CP Burgess, A Lerchner
arXiv preprint arXiv:1905.09275, 2019
992019
Unsupervised model selection for variational disentangled representation learning
S Duan, L Matthey, A Saraiva, N Watters, CP Burgess, A Lerchner, ...
arXiv preprint arXiv:1905.12614, 2019
532019
Understanding disentangling in β-VAE. arXiv 2018
CP Burgess, I Higgins, A Pal, L Matthey, N Watters, G Desjardins, ...
arXiv preprint arXiv:1804.03599, 1804
341804
Understanding disentangling in β
CP Burgess, I Higgins, A Pal, L Matthey, N Watters, G Desjardins, ...
VAE, ArXiv e-prints, 2018
232018
Understanding disentangling in β-VAE. arXiv
CP Burgess, I Higgins, A Pal, L Matthey, N Watters, G Desjardins, ...
arXiv preprint arXiv:1804.03599, 2018
182018
Understanding disentangling in β β-VAE
CP Burgess, I Higgins, A Pal, L Matthey, N Watters, G Desjardins, ...
arXiv preprint arXiv:1804.03599, 2018
122018
Understanding disentangling in β-VAE. arXiv e-prints, page
CP Burgess, I Higgins, A Pal, L Matthey, N Watters, G Desjardins, ...
arXiv preprint arXiv:1804.03599, 2018
112018
Spriteworld: A Flexible, Configurable Reinforcement Learning Environment
N Watters, L Matthey, S Borgeaud, R Kabra, A Lerchner
https://github.com/deepmind/spriteworld, 2019
102019
A heuristic for unsupervised model selection for variational disentangled representation learning
S Duan, N Watters, L Matthey, CP Burgess, A Lerchner, I Higgins
arXiv preprint arXiv:1905.12614, 2019
62019
Neuronal spike train entropy estimation by history clustering
N Watters, GN Reeke
Neural Computation 26 (9), 1840-1872, 2014
62014
Modular object-oriented games: a task framework for reinforcement learning, psychology, and neuroscience
N Watters, J Tenenbaum, M Jazayeri
arXiv preprint arXiv:2102.12616, 2021
32021
Making object-level predictions of the future state of a physical system
N Watters, R Pascanu, PW Battaglia, D Zorn, TG Weber
US Patent 10,887,607, 2021
32021
Modeling Human Eye Movements with Neural Networks in a Maze-Solving Task
J Li, N Watters, H Sohn, M Jazayeri
Annual Conference on Neural Information Processing Systems, 98-112, 2023
2023
Making object-level predictions of the future state of a physical system
N Watters, R Pascanu, PW Battaglia, D Zorn, TG Weber
US Patent 11,388,424, 2022
2022
Системата не може да изпълни операцията сега. Опитайте отново по-късно.
Статии 1–20